Testing Significance Testing

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Significance Testing

6-Step Method for Tests of Significance ........................................................................ 1 Estimation versus Testing ............................................................................................... 2 Overview of Tests of Significance .................................................................................. 3 Purpose of Significance Testing ..........

متن کامل

Significance Testing

As with ordinary least squares regression or logistic regression, we can consider significance tests for individual estimates, such as intercepts, slopes, and their variances, as well as whether the full model accounts for a significant amount of variance in the dependent variable. In between, there is also the possibility of determining whether of subset of predictors contribute significantly....

متن کامل

Nonparametric significance testing

A procedure for testing the signi cance of a subset of explanatory variables in a nonparametric regression is proposed Our test statistic uses the kernel method Under the null hypothesis of no e ect of the variables under test we show that our test statistic has a nh standard normal limiting distribution where p is the dimension of the complete set of regressors Our test is one sided consistent...

متن کامل

Significance Testing and Confidence Intervals

probabilities, it can be determined that combining the probability values of 0.11 and 0.07 results in a probability value of 0.045. Therefore, these two nonsignificant findings taken together result in a significant finding. Although there is never a statistical basis for concluding that an effect is exactly zero, a statistical analysis can demonstrate that an effect is most likely small. This ...

متن کامل

Testing Significance in Bayesian Classifiers

The Fully Bayesian Significance Test (FBST) is a coherent Bayesian significance test for sharp hypotheses. This paper explores the FBST as a model selection tool for general mixture models, and gives some computational experiments for Multinomial-Dirichlet-Normal-Wishart models.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Collabra: Psychology

سال: 2018

ISSN: 2474-7394

DOI: 10.1525/collabra.108